Worksheet for 2020-09-18

Questions marked with ${ }^{* *}$ are less relevant to the core material and/or more difficult.
Problem 1. A hill is described by the equation

$$
\left.z=50-2 x^{2}+4 x-y^{2}-6 y\right) f(x, y)
$$

(a) What are the x and y coordinates of the peak of this hill? (Hint: the tangent plane is horizontal at the peak.)
(b) A person starts at the point $(-3,0,20)$ and goes directly towards the peak-meaning their path when viewed from above looks like a straight line. At the point $(-3,0,20)$, how steep is their path?
(c) There is a level road around the mountain at elevation $z=20$ (where the person started walking). What angle is formed between the person's path and the road in \mathbb{R}^{3} ? (I didn't try to make the numbers work out nicely so expect inverse trig functions in your final answer.)
(a) Solution 1, look for where $\frac{\partial z}{\partial x}=\frac{\partial z}{\partial y}=0$:

$$
\left\{\begin{array}{l}
-4 x+4=0 \\
-2 y-6=0
\end{array}\right.
$$

$$
\Rightarrow x=1, \quad y=-3 .
$$

Solution 2. Using the fact that this particular surface is an elliptic paraboloid, complete the square to find vertex location:

$$
\begin{aligned}
& z=-2(x-1)^{2}+2-(y+3)^{2}+9+50 \\
& \therefore x=1 \quad y=-3 \text { vertex }
\end{aligned}
$$

(b) We need to compute $D_{\vec{u}} f(-3,0)$ where \vec{u} is a unit vector in the direction of the peak:

$$
\text { Direction: }\langle 1,-3\rangle-\langle-3,0\rangle=\langle 4,-3\rangle
$$

$$
\vec{u}=\langle 4 / 5,-3 / 5\rangle
$$

$$
D_{\vec{n}} f(-3,0)=\langle 16,-6\rangle \cdot\langle 4 / 5,-3 / 5\rangle=\frac{82}{5}
$$

(c)

View from above:

Angle:

$$
\cos ^{-1}\left(\frac{-24 / 5}{\frac{\sqrt{6149}}{5} \cdot 2 \sqrt{73}}\right) \approx 90.98^{\circ} \text { so we want }
$$

approx.

Problem 2. The cone $x^{2}+y^{2}=z^{2}$ intersects the plane $2 x+3 y+z=23$ in a curve C.
Verify that the point $(3,4,5)$ lies on C, and find the tangent line to C at that point.
${ }^{* *}$ What kind of curve is C ?
Check: $\quad 3^{2}+4^{2}=5^{2}$ and $2 \cdot 3+3 \cdot 4+5=23$.

a tangent rec to C should be tangent to both the cone and the plane.
So it should be orthogonal to the normal vectors of the two surfaces.

Comate a normal to cone:

$$
F(x, y, z)=x^{2}+y^{2}-z^{2} . \quad \nabla F(5,4,5)=\langle 6,8,-10\rangle .
$$

Normal to plane: $\langle 2,3,1\rangle$
So a direction vector for tangent line: $\langle 2,3,1\rangle \times\langle 3,4,-5\rangle=\langle-19,13,1\rangle$

$$
\vec{r}(t)=\langle 3,4,5\rangle+t\langle-19,13,1\rangle
$$

**) Substituting $z=23-2 x-3 y$ into first eq:

$$
\begin{aligned}
& -3 x^{2}-12 x y+92 x-8 y^{2}+138 y-529=0 \\
& (-12)^{2}-4(-3)(-8)=48>0
\end{aligned}
$$

so this is a hyperbola.

